## VITLAB® Dispenser line: genius<sup>2</sup>, simplex<sup>2</sup>, and TA<sup>2</sup>

VITLAB<sup>®</sup> genius<sup>2</sup> and simplex<sup>2</sup> bottle-top dispensers are a family of instruments with proven precision that offer many advantages in routine liquid-handling operations. VITLAB<sup>®</sup> genius<sup>2</sup> and simplex<sup>2</sup> instruments can be used for practically any task and are suitable for organic and inorganic solutions, while VITLAB<sup>®</sup> TA<sup>2</sup> dispensers have been specially developed for use in trace analysis and with highly concentrated media. As they are produced from materials with extremely high chemical resistance (e.g. PTFE, PFA, FEP, borosilicate glass and platinum-iridium), VITLAB<sup>®</sup> bottle-top dispensers are very robust and reliable and resistant against most acids, bases and organic solvents.



|                                     | VITLAB <sup>®</sup> genius <sup>2</sup> /simplex <sup>2</sup> /simplex <sup>2</sup> <sub>fix</sub>                     | VITLAB® TA <sup>2</sup>                                                                                                                                        |  |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Applications                        | Salt solutions, acids, bases, and many organic solvents                                                                | Specially for use in trace analysis for dispensing<br>high-purity and highly concentrated acids and alka-<br>lis, as well as hydrogen peroxide, bromine and HF |  |
| Components in contact<br>with media | Borosilicate glass, Al <sub>2</sub> O <sub>3</sub> -ceramic, FEP, ETFE, PFA,<br>PTFE, platinum-iridium, PP (screw cap) | Various fluoroplastics (e.g., ETFE, FEP, PFA, PCTFE, PTFE), $AI_2O_3$ -sapphire, platinum-iridium or tantalum (depending on the model)                         |  |
| Operating limits                    | Temperature: +15 °C to +40 °C<br>Steam pressure: max. 600 mbar<br>Viscosity: max. 500 mm²/s<br>Density: max. 2.2 g/cm³ | Temperature: +15 °C to +40 °C<br>Steam pressure: max. 600 mbar<br>Viscosity: max. 500 mm²/s<br>Density: max. 3.8 g/cm³                                         |  |

\* Dynamic viscosity [mPas] = kinematic viscosity [mm<sup>2</sup>/s] x density [g/cm<sup>3</sup>]

## General guide for dispenser selection (for the classification of dispenser media, see page 18).

| Salt solutions                                                | Acids and bases | Solvents                             | High-purity and highly<br>concentrated acids and<br>bases | Hydrofluoric acid (HF),<br>bromine, hydrogen<br>peroxide |
|---------------------------------------------------------------|-----------------|--------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|
| VITLAB <sup>®</sup> genius <sup>2</sup> /simplex <sup>2</sup> |                 | VITLAB <sup>®</sup> genius²/simplex² |                                                           |                                                          |
|                                                               |                 |                                      |                                                           |                                                          |
|                                                               |                 |                                      | VITLAB® TA <sup>2</sup>                                   |                                                          |
|                                                               |                 |                                      |                                                           |                                                          |



## Recommended usage ranges for VITLAB<sup>®</sup> genius<sup>2</sup> and VITLAB<sup>®</sup> simplex<sup>2</sup>:

| _   | Medium                          |        | Medium                              |   | Medium                                          |
|-----|---------------------------------|--------|-------------------------------------|---|-------------------------------------------------|
| 0   |                                 |        |                                     |   |                                                 |
| 0   | Acetaldehyde                    |        | Cresol                              |   | Methyl ethyl ketone                             |
| 0   | Acetic acid, $\leq 96\%$        | 0      | Cumene (Isopropylbenzene)           |   | Methyl formate                                  |
| 0   | Acetone                         | 0      | Cyclohexanone<br>Decane             |   | Methyl propyl ketone<br>Mineral oil (Motor oil) |
| 0   | Acetonitrile<br>Acetylacetone   |        | 1-Decanol                           |   | Monochloroacetic acid, $\leq 50\%$              |
| 0   | Acrylic acid                    |        |                                     |   | Nitric acid, $\leq 60\%$ */**                   |
| 0   | Acrylonitrile                   | 0<br>0 | Diethylene glycol<br>Dibenzyl ether |   | Nitrobenzene                                    |
| 0   |                                 | 0      | Dichlorobenzene                     | 0 | Octane                                          |
| 0   | Adipic acid<br>Allyl alcohol    | 0      | Dichloroethane                      | 0 | Oleic acid                                      |
|     | Aluminium chloride              | 0      | Diethanolamine                      |   | Oxalic acid                                     |
|     | Amino acid                      |        |                                     | 0 | Perchloric acid                                 |
|     | Ammonium chloride               | 0      | Diethyl ether                       | 0 | Petroleum                                       |
|     | Ammonium fluoride               | 0      | Diethylamine                        |   | Phenol                                          |
|     |                                 |        | 1,2 Diethylbenzene                  |   |                                                 |
|     | Ammonium hydroxide, ≤ 20%       | 0      | Dimethyl sulphoxide (DMSO)          |   | Phenylethanol                                   |
|     | Ammonium sulphate               | 0      | Dimethylaniline                     | 0 | Phenylhydrazine                                 |
| 0   | Amyl acetate                    | 0      | Dimethylformamide (DMF)             | 1 | Phosphoric acid, $\leq 85\%$                    |
| 0   | Amyl alcohol (Pentanol)         | 0      | 1,4 Dioxane                         | 1 | Phosphoric acid, 85% + sulphuric acid, 98%,1:1  |
| 0   | Amyl chloride (Chloropentane)   | 0      | Diphenyl ether                      | 0 | Piperidine                                      |
| 0   | Aniline                         | 0      | Ethanol                             | 1 | Potassium chloride                              |
|     | Barium chloride                 | 0      | Ethanolamine                        | 1 | Potassium dichromate                            |
| 0   | Benzaldehyde                    | 0      | Ethyl acetate                       | 1 | Potassium hydroxide                             |
| 0   | Benzene                         | 0      | Formaldehyde, ≤ 40%                 |   | Potassium permanganate                          |
| 0   | Benzoyl chloride                | 0      | Formamide                           |   | Propanol                                        |
| 0   | Benzyl alcohol                  | 0      | Formic acid                         |   | Propionic acid                                  |
| 0   | Benzyl chloride                 | 0      | Gasoline                            |   | Propylene glycol (Propanediol)                  |
| 0   | Benzylamine                     | 0      | Glacial acetic acid                 |   | Propylene oxide                                 |
| 1   | Boric acid, ≤ 10%               | 0      | Glycerine                           |   | Pyridine                                        |
| 0   | Bromobenzene                    |        | Glycol (Ethylene glycol)            |   | Pyruvic acid                                    |
| 0   | Bromonaphthalene                | 0      | Glycolic acid, 50%                  |   | Salicylaldehyde                                 |
| 0   | Butanediol                      | 0      | Heating oil (Diesel oil)            | 0 | Salicylic acid                                  |
| 0   | 1-Butanol                       | 0      | Hexane                              | 0 | Silver acetate                                  |
| 0   | n-Butyl acetate                 | 0      | Hexanoic acid                       | 1 | Silver nitrate                                  |
| 0   | Butyl methyl ether              | 0      | Hexanol                             | 0 | Sodium acetate                                  |
| 0   | Butylamine                      | 1      | Hydrochloric acid, $\leq 37\%$ **   | 1 | Sodium chloride                                 |
| 0   | Butyric acid                    |        | Hydroiodic acid, ≤ 57%**            | I | Sodium dichromate                               |
| T   | Calcium carbonate               | Ι      | Iodine / potassium iodide solution  | 1 | Sodium fluoride                                 |
| - I | Calcium chloride                | 0      | Isoamyl alcohol                     |   | Sodium hydroxide, $\leq$ 30%                    |
| - I | Calcium hydroxide               | 0      | Isobutanol                          | 1 | Sodium hypochlorite                             |
| Ι   | Calcium hypochlorite            | 0      | Isopropanol (2-propanol)            | 1 | Sulphuric acid, ≤ 98%                           |
| 0   | Chloroacetaldehyde, $\leq 45\%$ | 0      | Isopropyl ether                     | 0 | Tartaric acid                                   |
| 0   | Chloroacetic acid               | 0      | Lactic acid                         | 0 | Tetramethylammonium hydroxide                   |
| 0   | Chloroacetone                   | Ι      | Magnesium chloride                  | 0 | Toluene                                         |
| 0   | Chlorobenzene                   | I      | Mercury chloride                    |   | Turpentine                                      |
| 0   | Chlorobutane                    | 0      | Methanol                            |   | Urea                                            |
| 0   | Chloronaphthalene               | 0      | Methoxybenzene                      |   | Xylene                                          |
| I   | Chromic acid, $\leq 50\%$       | 0      | Methyl benzoate                     | 1 | Zinc chloride, $\leq 10\%$                      |
| Т   | Chromic-sulphuric acid          | 0      | Methyl butyl ether                  | 1 | Zinc sulphate, $\leq 10\%$                      |
| I   | Copper sulphate                 |        |                                     |   |                                                 |

The above data have been carefully checked and reflect the current state of knowledge. Always follow the instructions for use that accompany the instrument as well as the reagent manufacturer's instruction manual. In addition to the chemicals listed above, solutions of a wide variety of organic or inorganic salts (e.g., biological buffers), biological detergents, and cell culture media can be dispensed. Should you require information on chemicals not listed, please do not hesitate to contact us. Last updated: 10/15.

\* Use ETFE/PTFE bottle adapter \*\* Use drying tube

- I Inorganic media
- O Organic media